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Abstract

As the multi-systemic components of COVID-19 emerge, parallel etiologies can be drawn 

between SARS-CoV-2 infection and radiation injuries. While some SARS-CoV-2-infected 

individuals present as asymptomatic, others exhibit mild symptoms that may include fever, cough, 

chills, and unusual symptoms like loss of taste and smell and reddening in the extremities (e.g., 

“COVID toes,” suggestive of microvessel damage). Still others alarm healthcare providers with 

extreme and rapid onset of high-risk indicators of mortality that include acute respiratory distress 

syndrome (ARDS), multi-organ hypercoagulation, hypoxia and cardiovascular damage. 

Researchers are quickly refocusing their science to address this enigmatic virus that seems to 

unveil itself in new ways without discrimination. As investigators begin to identify early markers 

of disease, identification of common threads with other pathologies may provide some clues. 

Interestingly, years of research in the field of radiation biology documents the complex multi-

organ nature of another disease state that occurs after exposure to high doses of radiation: the 

acute radiation syndrome (ARS). Inflammation is a key common player in COVID-19 and ARS, 

and drives the multi-system damage that dramatically alters biological homeostasis. Both 

conditions initiate a cytokine storm, with similar pro-inflammatory molecules increased and other 

anti-inflammatory molecules decreased. These changes manifest in a variety of ways, with a 

demonstrably higher health impact in patients having underlying medical conditions. The 

potentially dramatic human impact of ARS has guided the science that has identified many 

biomarkers of radiation exposure, established medical management strategies for ARS, and led to 

the development of medical countermeasures for use in the event of a radiation public health 

emergency. These efforts can now be leveraged to help elucidate mechanisms of action of 

COVID-19 injuries. Furthermore, this intersection between COVID-19 and ARS may point to 

approaches that could accelerate the discovery of treatments for both.

INTRODUCTION

The world is currently in the grip of a global pandemic. As of September 10, 2020, over 50 

million cases of COVID-19, the disease caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), have been reported worldwide. At the forefront of directing 
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research activities focused on combating COVID-19 is the National Institute of Allergy and 

Infectious Diseases (NIAID) within the U.S. National Institutes of Health (NIH). In April 

2020, the NIAID published the NIAID Strategic Plan for COVID-19 Research2 describing 

NIAID’s efforts to better understand SARS-CoV-2 and to accelerate the development of safe 

biomedical tools. The plan is a well-defined document that focuses on four research 

priorities: improving fundamental knowledge of SARS-CoV-2 and COVID-19; supporting 

the development of diagnostics and assays; characterizing and testing therapeutics; and 

developing safe and effective vaccines against SARS-CoV-2. A detailed research plan for 

each priority area is described in the document.

The novelty of the 2019 novel coronavirus disease (COVID-19) is underscored by the fact 

that there are no FDA-approved or licensed therapeutics specific for coronaviruses. The 

traditional drug development pathway for therapeutics (and diagnostic tools) can be a years-

long process with milestones that require extensive resources to achieve. However, the 

urgency of the COVID-19 pandemic emphasizes the need for rapid development and testing 

of promising therapeutic and diagnostic candidates. Approaches to accelerate the 

development process are being explored in other areas of science where overlapping trends 

can be investigated. Therapeutics developed for other clinical indications could potentially 

be repurposed to treat COVID-19; some of those possibilities are discussed in this review. 

Likewise, pathological features and manner of progression of other indications similar to 

COVID-19 could elucidate how to effectively mitigate and treat this disease. In this review, 

we describe observed parallels between COVID-19 and the biological effects of radiation 

injury that include immediate and long-term components: the acute radiation syndrome 

(ARS) and the delayed effects of acute radiation exposure (DEARE).

The Radiation and Nuclear Countermeasure Program (RNCP) within the NIAID is one such 

program in which the scientific work is relevant to the COVID-19 response. The RNCP was 

initiated in 2004, with the mission of supporting research to develop medical 

countermeasures to diagnose (biodosimetry) and treat radiation injuries leading to ARS and 

DEARE in the wake of a radiation public health emergency. The marked similarities 

between COVID-19 and radiation injuries described in this review have a major 

underpinning: the inflammatory response. Several products currently in development within 

the RNCP to treat radiation exposure operate by targeting inflammation that can lead to 

tissue damage. In fact, approaches developed to treat radiation-induced lung fibrosis and 

vascular damage merit investigating and are discussed here in the context of COVID-19.

TARGETS

Here we highlight some of the systems and immunological areas affected by both 

COVID-19 and acute radiation exposure, albeit to different levels. In both cases, the result is 

a systemic insult that can cause damage to many parts of the body, including the vascular 

system, lung, heart, kidneys, liver, gut, eyes and brain. Regardless of the target organ, the 

hyperactivation of the immunogenic pathways are at the heart of the body’s response to 

overcome SARS-CoV-2 and acute radiation exposure (1). Cytokines are produced by a 

2NIAID strategic plan for COVID-19 research FY2020–FY2024, April 22, 2020. (https://bit.ly/3mFnb2e)
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variety of immune cells (i.e., macrophages, B lymphocytes, T lymphocytes and mast) and 

non-immune cells (i.e., endothelial, fibroblasts and stromal). Under normal circumstances, 

cytokines have a short half-life and act as local mediators within a microenvironment; 

therefore, circulating cytokines in the blood are below the limit of detection of most 

commercially available assay kits (2). This complex communication network provides a 

healthy immune system with the proper signals to mount a proportionate response against an 

infectious agent or inflammatory stimuli. In other cases, the reaction is so strong that 

circulating cytokine levels surge, resulting in a “cytokine storm” (also called 

hypercytokinemia3) or an overaction of the immune system creating a generalized 

inflammatory response that can lead to systemic tissue damage. The cytokine storm is the 

nexus between SARS-CoV-2 infection and radiation exposure; both result in systemic 

inflammation that ravages the body (1, 3).

A wealth of early literature has described the cytokine storm syndrome (CSS) in COVID-19 

patients (4–15). For example, in a study of 50 patients, expression levels of 14 of 48 

cytokines studied were associated with disease severity and progression, with interferon 

(IFN)-γ-induced protein 10 and monocyte chemotactic protein-3 noted as excellent 

predictors of disease progression (16). Increases in granulocyte-macrophage colony-

stimulating factor (GM-CSF) and interleukin-6 (IL-6) due to T-cell overactivation were also 

noted (17). Another retrospective study with 3,939 patients shows both mild and severe 

forms of COVID-19 disease resulting in changes in circulating leukocyte subsets and 

cytokine secretion (8). In particular, Vaninov et al. noted that persistent high levels of three 

cytokines (CXCL10, CCL7 and IL-1 receptor antagonist) were associated with increased 

viral load, loss of lung function, lung injury and a fatal outcome (12). Based on these kinds 

of findings of elevated levels of specific cytokines, in June 2020 the FDA issued an 

Emergency Use Authorization (EUA) for an in vitro diagnostic test based on measuring the 

circulating IL-6 levels in serum or plasma for the management of patients with COVID-194 

(discussed in more detail below). However, emerging technologies measuring “cytokine 

signatures” demonstrate variability across subjects and highlight the need for the 

development of personalized treatments based on these data.

As observed with COVID-19, cytokines are also released by many cells after radiation 

exposure, including endothelial cells, fibroblasts, immune cells and parenchymal cells. The 

interplay and early activation of inflammatory reactions involving proteins in cytokine 

cascade, such as fibroblast growth factor (FGF), transforming growth factor (TGF), tumor 

necrosis factor (TNF-α), and interleukins (ILs) is thought to be responsible for DEARE. 

Cytokines and chemokines that attract immune cells and lead to inflammation include IL-1α 
and IL-6. Inflammatory cells cause numerous other changes to occur, such as cell death, 

promotion of fibrosis and swelling of the tissue. These cytokines are involved in both early 

and late reactions, like the major cytokines in the response of skin cells to ionizing radiation, 

and include IL-1, IL-6, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, 

which can be pro-or anti-inflammatory depending on the tissue and context of release, and 

3NIH/National Cancer Institute. NCI Dictionaries. Cytokine storm. (https://bit.ly/35RIp73)
4U.S. Food and Drug Administration. Letter to Linda McCammack, Senior Regulations Manager, Roche Diagnostics. Emergency use 
authorization for Elecsys IL-6. June 2, 2020. (https://bit.ly/32NzWzG)
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the chemokines IL-8 and eotaxin (18). Cytokines can be broadly grouped as pro-

inflammatory cytokines such as TNF-α, IL-1α and β, IL-17; angiogenic/vascular 

endothelial growth factor (VEGF), TNF-α and FGF; anti-inflammatory IL-4, IL-10 and 

TGF-β; pro-fibrotic IL-6 and TGF-β; immune IL-2, IL-4 and IL-7; and hematopoietic CSF1, 

GM-CSF, IL-3 and EPO (19). Interestingly, persistence of inflammatory cytokines, 

chemokines and growth factors, such as TGF-β, IFN-γ, ET-1, IL-4, IL-13, lead to 

pulmonary fibrosis (20). Notably, IL-6, which appears to be a key player in the response to 

SARS-CoV-2, is altered after irradiation as well; however, its role in radiation-induced lung 

injury is still unclear (21).

In addition to the cytokine storm, dysregulation of the renin-angiotensin system (RAS) plays 

a critical role in the pathogenesis of COVID-19 (22) and radiation exposure. The RAS 

pathway, which regulates the body’s fluid regulation system, is dependent on angiotensin 

converting enzyme (ACE) and ACE2. ACE regulates blood pressure, water, and sodium 

levels as well as inflammation, proliferation and vasoconstriction. ACE2, the target receptor 

of SARS-CoV-2, is involved in degrading AngII to produce Ang 1–7 and then further to 

angiotensin 1–5, which is the effector peptide (23). ACE2 can be found in a variety of 

organs (e.g., heart, kidney, adipose tissue, vascular smooth muscle cells, brain tissue, testis, 

gastrointestinal (GI) tract, etc.). Together ACE/ACE2 promote vasodilation to reduce blood 

pressure and maintain homeostasis of the RAS. ACE2 is expressed throughout the body, so 

it is no surprise that it plays many physiological roles, which extend beyond its ability to 

reduce blood pressure. These include cardiac and lung protection by ACE2. A mouse study 

by Imai et al. shows that AngII, upregulated by ACE, drives severe lung failure through the 

AT1a receptor while ACE2 and the AT2 receptors protect against lung injury. The group 

showed that exogenous recombinant human ACE2 reduces acute lung failure in ACE2 

knockout and wild-type mice (24, 25), and impacts GI dysregulation and diabetic 

complications (26). As SARS-CoV-2 (27) binds ACE2, it is possible that ACE2 receptors 

are downregulated, causing an imbalance in the RAS (28).

Both cytokine and RAS disequilibria may have implications in the development of lung and 

other organ injuries for both COVID-19 (3, 22, 27) and ionizing radiation exposure (29, 30), 

although the interplay is complex and not completely understood. In general, SARS-CoV-2 

infection (31) and ionizing radiation exposure (31) trigger pro-inflammatory cytokines (e.g., 

IFN-α, IFN-γ, IL-1β, IL-6, IL-12, IL-18, IL-33, TNF-α, TGF-β, etc.). In the case of 

COVID-19, the lung is the most prevalent initial target and, in some cases, the injury 

progresses from pneumonitis (32, 33) to acute respiratory distress syndrome (ARDS). This 

heightened chronic inflammatory response creates a pro-fibrotic environment that yields 

long-term fibrosis followed by organ dysfunction. Similarly, exposure to radiation can also 

result in lung fibrosis (34–36) as well as injury to other organs (37–39).

The vasculature is also targeted by SARS-CoV-2, as evidenced by the prevalence of 

systemic thrombotic events (40), endotheliitis (endothelial inflammation) (41) and “COVID 

toes” (suggesting dysfunction of microvessels in the extremities) (42, 43). The virus has 

been shown to directly infect endothelial cells (41), and their subsequent dysregulation likely 

explains the many vascular coagulopathies and thromboses that have been noted in 

COVID-19 patients. Recently, Zamboni (44) described COVID-19 as a vascular disease, 
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with the endothelial cell emerging as a potent target for SARS-CoV-2, while the 

endothelium is called “the lynchpin” of COVID-19 pathogenesis, orchestrating the cytokine 

storm and damage to multiple organs (45). In severe cases, this dysfunction has led to 

strokes (46) and other cardiovascular involvement (47). Similarly, acute radiation exposure 

leads to vascular injury (48) by way of apoptosis and senescence of endothelial cells as well 

as via an increase in cell adhesion molecules (49) and dysregulation of coagulation 

homeostasis (50).

Another common target of SARS-CoV-2 and acute radiation exposure is the pyroptosis 

pathway or caspase-1-dependent programmed cell death of eukaryotic cells. Pyroptosis is a 

mechanism by which the body’s innate immune system clears pathogens and promotes an 

adaptive immune response. Caspase-1 initiates inflammation that results in the formation of 

plasma-membrane pores in pathogen-infected cells, enabling water to enter, causing 

swelling and osmotic lysis. In addition, caspase-1 promotes cleavage of chromosomal DNA 

and nuclear condensation. Caspase-1 is activated by Toll-like receptors (TLRs) and NOD-

like receptors (NLRs) present on immune cells, such as macrophages or epithelial cells, 

which sense extracellular and intracellular danger signals produced by pathogens or tissue 

injury. This cellular communication network results in an inflammatory cascade initiated by 

NF-κB, mitogen-activated protein kinase (MAPK)- and interferon-regulatory factor (IRF)- 

dependent pathways, activating IFN-α/β, TNF-α/β, IL-12, IL-6, IL-8 and pro-IL-1β. The 

pyroptosis pathway is also implicated in immune cell death (e.g., in the spleen) after acute 

radiation exposure (51, 52). Furthermore, the NF-κB/TNF-α signaling pathway is also 

activated in response to ionizing radiation, resulting in a similar cytokine cascade. In fact, a 

recently published study showed that pyroptosis may play a role in radiation-induced lung 

inflammation and fibrosis (53).

BIOMARKERS

Biomarkers in Pathophysiology of COVID-19 and Radiation Injury

There is a remarkable similarity in the pattern of biomarker response to SARS-CoV-2 

infection and radiation exposure. Significant changes in hematological, chemical, 

inflammatory and immune biomarkers are seen in COVID-19 and in irradiated patients. 

Although the insult (infection or acute radiation exposure) is vastly different, the ensuing 

pathologies converge to multiorgan dysfunction (MOD), resulting in multiorgan failure 

(MOF) and mortality. Biomarkers unique to each insult, such as smell dysfunction for 

COVID-19, or cytogenetic, genomic or metabolomic approaches for radiation biodosimetry 

are not discussed here.

Hematology

The classical approach of hematology has emerged as a valuable tool in predicting outcome 

as well as stratifying and management of COVID-19 patients (54–59). For example, a 

retrospective analysis compared hemocyte counts (neutrophils, lymphocytes and platelets; or 

“NLP score”) and found a strong correlation between NLP score and COVID-19 disease 

progression, while another published study noted lymphocyte decrease associated with 

COVID-19 severity (60, 61). Furthermore, Chen et al. conducted a retrospective study on 
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548 patients and noted that the counts of lymphocytes, T-cell subsets, eosinophils and 

platelets decreased markedly, especially in severe/critical and fatal patients. Increased 

neutrophil count and neutrophil-to-lymphocyte ratio were predominant in severe/critical 

cases or non-survivors (61). From separate studies, it was observed that an increase in the 

neutrophil-to-lymphocyte ratio (NLR) is an early warning signal for severe COVID-19 (59, 

62, 63). These data are further supported by findings from a published study of 75 patients 

from Suzhuo, China with confirmed COVID-19 infection; common COVID-19 abnormal 

hematological indexes on admission included hyperfibrinogenemia, lymphopenia, elevation 

of D-dimer, and leukopenia, which were significantly different between the mild/moderate 

and severe COVID-19 groups. Furthermore, the dynamic change of NLR and D-dimer level 

can distinguish severe COVID-19 cases from the mild/moderate (64).

Hematological data could be further refined to interrogate a single cell population (such as 

lymphocytes or platelets) that yielded significant correlation with COVID-19 progression 

and severity. A meta-analysis of 3,099 patients from 24 different studies showed that 

patients who did not fare well had low lymphocyte counts (mean difference of −361.06/μl) 

compared to patients who had good outcomes (65). Other researchers have also reported 

lymphopenia as a key biomarker in COVID-19 patients (66–68); Terpos et al. (68) referred 

to lymphopenia as “a cardinal laboratory finding, with prognostic potential,” urging for the 

need for longitudinal evaluation of parameters to follow the dynamics of the disease 

progression. Thrombocytopenia is also commonly noted among patients hospitalized with 

COVID-19 and a low platelet count is associated with higher mortality (57, 69–74). It is 

hypothesized that SARS-CoV-2 infects both bone marrow cells and platelets via the CD13 

receptor, inducing growth inhibition and apoptosis. This entry disrupts hematopoiesis, 

resulting in thrombocytopenia. Another cause of thrombocytopenia is attributed to lung 

injury due to activation, aggregation, and retention of platelets in the lung. The formation of 

thrombus at the site of lung injury leads to decreased platelet production and increased 

consumption (75, 76). Interestingly, in most cases the platelet decreases did not reach a level 

where spontaneous bleeding occurred.

As seen with COVID-19 patients, radiation exposure also results in profound hematological 

perturbations in humans as well as irradiated animal models, characterized by 

granulocytopenia, lymphopenia and thrombocytopenia (77–81). Unlike COVID-19, 

significant decreases in neutrophils, in addition to other cytopenias, is a hallmark of ARS 

(82). The SEARCH (System for Evaluation and Archiving of Radiation accidents based on 

Case Histories) (82) database contains 824 clinical cases from 81 radiation accidents in 19 

countries and allows detailed analysis of the time course of ARS, with the intention to study 

all medical aspects of ARS and to derive medical treatment protocols for radiation accident 

victims (MEdical TREatment ProtocOLs; METREPOL) (83). The hematopoietic syndrome 

can be characterized by granulocyte count kinetics (84). The Radiation Emergency Medical 

Management (REMM)5 website provides guidance on triaging radiation accident victims 

based on lymphocyte depletion kinetics. The kinetics of lymphocyte depletion have been 

shown to be directly related to the absorbed radiation dose from 0.5 to 10 Gy (85–87). 

5U.S. Dept. of Health and Human Services. REMM/Radiation Emergency Medical Management. Guidance on diagnosis and 
treatment for healthcare providers. (https://www.remm.nlm.gov/)
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Furthermore, the ratio of neutrophil to lymphocyte has been employed to determine the 

radiation dose exposure (88–90). Interestingly, platelet depletion alone has not been used to 

determine radiation dose, although thrombocytopenia correlates directly with radiation dose 

and platelet utilization at sites of active bleeding.

Serum Biomarkers

Patients with moderate and severe COVID-19 showed significant increase in levels of serum 

amyloid A (SSA), C-reactive protein (CRP) which positively correlated to COVID-19 

pneumonia (24), and serum albumin (ALB) levels (P < 0.05) (62). Radiation also induces 

increases in the serum and urine proteome. CRP and serum amylase are commonly elevated 

after radiation exposure (91–93). In the criticality accident at Tokaimura, all three patients 

presented with elevated serum amylase (94). CRP levels were reported to correlate with 

clinical outcome in patients exposed to radiation during the Chernobyl nuclear accident (95). 

From a published study that identified 260 radiation-responsive proteins (96), Partridge et al. 
(97) narrowed the panel to IL-6, IL-1β, TNF-α and TGF-β levels as being strongly 

correlated to irradiation, with IL-6 emerging as the best marker for COVID-19 and acute 

radiation exposure.

Electrolytes

Electrolyte imbalance with reduced potassium, calcium, chloride and sodium is observed in 

patients with COVID-19 (72, 76, 98). Pooled analysis of data on serum electrolytes confirms 

that hyponatremia, hypokalemia and hypocalcemia are associated with COVID-19 severity; 

however, the authors cautioned that additional information such as calcium concentrations, 

serum albumin levels and the patients’ fluid status is necessary for accurate interpretation of 

laboratory findings (99). Interestingly, the authors draw a correlation between electrolyte 

imbalance and progression of COVID-19 disease and MOF. SARS-CoV-2 binds to its host 

receptor, ACE2, and reduces ACE2 expression, leading to increased angiotensin II, which 

can cause increased potassium excretion by the kidneys resulting in hypokalemia, while 

plasma angiotensin II is purported to be a mediator of ARDS and ensuing MOF seen in a 

significant number of COVID-19 patients (100). Another cause of electrolyte loss in 

COVID-19 patients is attributed to GI causes such as diarrhea and emesis (101). The U.S. 

Centers for Disease Control (CDC) has described a similar electrolyte imbalance, 

accompanied by diarrhea and emesis, due to damage and disruption of the intestine after 

radiation exposure (102, 103).

Immune Biomarkers

Lymphocyte counts provide a rapid snapshot of the prognosis for patients with COVID-19. 

Delving into the lymphocyte subsets provides a clearer understanding of the patient’s 

immune status, with both diagnostic and prognostic value (104). In a 103-patient study, a 

significant decrease in T-cell populations were reported. In particular, the CD3+, CD4+, 

CD8+ and NK cell counts dropped, with the CD4+/CD8+ ratio increased in COVID-19 

patients compared to healthy controls (105). In other published studies, a correlation was 

noted between the severity of disease and reduction in T-cell subunits (61, 66) as well as 

decreases in B-cell numbers (106).
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Persistent changes in the immune system after radiation exposure are manifested as 

abnormalities in the lymphoid populations and function (107). Radiation studies have 

documented immediate changes in T-cell subsets (108) and B cells (109) linked to radiation 

dose. In particular, depletion of CD8+ cells has been correlated with absorbed radiation at 

low doses (110). In atomic bomb (A-bomb) survivors, a decrease in CD4 helper T-cell 

populations, attenuated T-cell function, as well as an increase in B-cell populations, which 

could drive long-term inflammation. Radiation dose-dependent reduction in CD4+ cell 

population has also been reported (111, 112). While these metrics are not used to monitor 

disease progression, they are indications of the continued immune dysfunction observed in 

patients after radiation exposure (113).

Vascular Dysfunction

Histological analysis of COVID-19 has shown that the presence of SARS-CoV-2 within 

endothelial cells was associated with clusters of inflammatory cells, suggesting that 

infection initiates endotheliitis throughout the entire human body, leading to systemic macro 

and microcirculatory dysfunction in vascular beds (44). VEGF-D was noted as an indirect 

procoagulant biomarker of COVID-19 progression (114) and angiopoietin-2 (a marker for 

endothelial activation), was associated with microvascular dysfunction (115). Vascular 

abnormalities such as vascular thickening, detected by thoracic computed tomography (CT), 

was reported to be significantly associated with COVID-19, when compared to non–

COVID-19 pneumonia (59% versus 22%, P < 0.001) (116). Ultimately, endotheliopathy 

converges with COVID-19-associated coagulopathies; a recently published study showed 

significant elevation in markers of endothelial cell and platelet activation with mortality 

strongly correlated to von Willebrand factor (VWF) antigen and plasma thrombomodulin 

(117).

Vascular dysfunction resulting from radiation exposure has also been reported. Of the 28 

people who died within 98 days of the Chernobyl criticality incident, deaths were attributed 

to skin, GI and lung reactions, but most deaths were characterized by circulatory problems, 

with a high incidence of edema and focal hemorrhages (118). After the Tokaimura Nuclear 

Plant accident in Tokai, Japan, Akashi discussed the possible role of inflammation and 

hemorrhage in radiation-induced MOF. In a review of 110 cases histories of radiation 

accidents spanning 1945 through 2000, the authors analyzed MOF after total-body 

irradiation (TBI) and stated that “...symptomatology of organ system involvement could be 

traced not only to the pathophysiology of the rapidly turning over cell renewal systems but – 

of equal or more importance – to the vascular system and specifically, to the endothelial 

components.” (119). The primary target of radiation injury to the vasculature is the 

endothelial cell. The acute phase of damage occurs within hours to weeks postirradiation, 

and is characterized by endothelial swelling, vascular permeability and edema, lymphocyte 

adhesion and infiltration, and apoptosis (52). Radiation-induced vascular biomarkers include 

inflammatory signals, endothelial activation and adhesion markers, and prothrombic markers 

(48, 120, 121), similar to those reported for COVID-19.

As of September 10, 2020, the FDA has authorized EUAs for more than 150 individual 

molecular diagnostic tests for SARS-CoV-2. As a sampling, from February 4, 2020 to June 
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18, 2020, a total of 85 tests received EUA authorization, which included 37 tests for 

detection of nucleic acids from SARS-CoV-2 and one antigen diagnostic test, with required 

conditions for manufacturers and authorized laboratories.6 Similarly, as of mid-June 2020, 

the FDA had authorized more than 20 serology biomarker tests, with the caveat to “always 

refer to the complete instructions for use to put these estimates into the proper context and to 

understand how to use and interpret these tests.” On June 2, 2020, the FDA authorized the 

only in vitro diagnostic test for the management of patients with COVID-19, which is based 

on measuring the circulating IL-6 levels in these patients. In stark contrast, no radiation 

biodosimetry test has been cleared/authorized by the FDA.

PATHOLOGY

As more information becomes available, it is increasingly apparent that COVID-19 is not 

just a pulmonary affliction, but a multi-organ disease. Curiously, many symptoms as well as 

underlying pathogenesis in this multi-organ injury caused by SARS-CoV-2 are similar to the 

multi-organ injury caused by acute ionizing radiation exposure. In a nuclear incident, a 

person’s entire body may be exposed to large doses of damaging ionizing radiation, while 

SARS-CoV-2 can only infect cells co-expressing angiotensin-converting enzyme 2 and 

transmembrane serine protease 2 (TMPRSS2). The presence of these proteins on a wide 

variety of cell types throughout the body such as airway epithelial cells, alveolar epithelial 

cells, lung macrophages and vascular endothelial cells (122, 123), absorptive enterocytes of 

the ileum and colon (124), explains the widespread damage caused by the infection (124). 

Indeed, SARS-CoV-2 RNA has been detected in sputum, nasal swabs, saliva, feces, blood, 

tears, urine and cerebrospinal fluid (125–128). Despite the differences in the initial cause of 

injury, systemic inflammation and coagulopathy, including disseminated intravascular 

coagulation (DIC) are hallmarks of both COVID-19 (123, 129–131) and acute radiation 

injury, with pyroptosis (51, 53, 131, 132) and neutrophil extracellular traps (133, 134) found 

in both. As noted in COVID-19 patients, hematopoietic ARS patients develop lymphopenia, 

thrombocytopenia and neutropenia due to bone marrow damage (135), possibly further 

contributing to multi-organ damage and failure. These disease processes found in both 

COVID-19 and acute and delayed radiation syndromes may directly cause or further 

exacerbate injury and pathogenesis in multiple organ systems (Fig. 1). In fact, multi-system 

inflammatory syndrome in children with COVID-19 has recently been described and affects 

a wide range of organs and systems (136).

Pulmonary disease and symptoms are the most common presentation of COVID-19 and 

respiratory failure is the most common cause of death in those with COVID-19 disease (98, 

137), whereas lung damage in irradiated patients is a later effect (compared to hematological 

and GI manifestations). Nonetheless, these injuries can also be severe and lead to death 

(138, 139). Pneumonitis and subsequent drop in blood oxygen levels are seen in COVID-19 

patients (98, 123, 140), as well as after irradiation, which often progresses to pulmonary 

fibrosis (36, 139). As with lung damage seen in COVID-19 patients, fibrosis was also seen 

in long-term follow-up of Middle East respiratory syndrome (MERS) patients (141). An 

increase in local neutrophils, cytokines and other immune factors is seen in COVID-19 

6U.S. Food and Drug Administration. In vitro diagnostics EUAs. (https://bit.ly/3mEFODt)
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patients with lung damage (32, 33), and also in patients and animal models of acute radiation 

exposure (34–36). These factors may also contribute to pneumonitis and provide further 

support to the hypothesis that lung injury seen in COVID–19 patients may progress to lung 

fibrosis.

While pulmonary symptoms are the most common in COVID-19 patients, GI symptoms are 

also common. Nausea, vomiting and diarrhea are all common symptoms in both COVID-19 

and irradiated patients. In one published study of 651 patients in China, it was found that 

11.4% of patients experienced at least one GI symptom (142) while in another study, 5% and 

3.8% of hospitalized COVID-19 patients experienced nausea/vomiting and diarrhea, 

respectively (143). Additionally, SARS-CoV-2 RNA is often found in stool samples of 

patients with and without GI symptoms (144), which is not surprising given that ACE2 is 

expressed throughout the intestines and co-expressed with TMPRSS2 in enterocytes in the 

ileum and colon (124). In addition, SARS-CoV-2 was recently found to infect enterocytes in 
vitro (145). The intestinal damage and symptoms seen in COVID-19 do not appear to be as 

extreme as those observed in GI-ARS, where crypt stem cells die, leading to loss of GI 

function and integrity, causing not only nausea, vomiting and diarrhea, but also hemorrhage, 

endotoxemia, bacterial infection and even death (34, 146). However, the involvement of the 

gut microbiota should not be overlooked in either disease process. While the effect of 

SARS-CoV-2 infection on the gut microbiome is not yet known, a healthy gut microbiome 

may have contributed to a successful, but not overly-inflammatory immune response and 

expedited recovery with other respiratory diseases (147). Interestingly, fecal microbiota 

transplants have been shown to increase survival in a lethal irradiation mouse model (148).

Another organ of concern is the heart. Though the coagulopathy seen in both COVID-19 and 

ARS may contribute to cardiomyopathy and circulatory failure, direct cardiac tissue 

remodeling is also seen in both disease processes. Cardiac ischemia, inflammation, fibrosis 

and wall thickening have been noted in COVID-19 patients (149, 150) and after irradiation, 

though dependent upon dose and time after irradiation (151, 152). SARS-CoV-2 infection 

and radiation both increase risk of myocardial infarction, with one study from China 

reporting that 7% of case fatalities had only myocardial damage and circulatory failure 

without respiratory failure (137). Studies of A-bomb survivors have shown that 

cardiovascular disease risk increases 14% per Gy of exposure (153). The short- and long-

term effects of cardiac damage from both disease processes is a concern.

Additionally, symptoms indicating damage to the central nervous system have been observed 

in patients with COVID-19 and those with ARS. Headache, disorientation, cognitive 

dysfunction, ataxia, seizures, unconsciousness, as well as other symptoms have been 

reported in patients who received lethal high-dose radiation (135) and in adult and juvenile 

COVID-19 patients (126, 154, 155). Radiation causes vascular damage and inflammation 

leading to hemorrhage and edema (156) and can increase risk of stroke (157). Similarly, 

brain damage in COVID-19 could be due to systemic inflammatory response and 

coagulopathy, leading to stroke and other issues (158), or may be directly due to infection of 

brain tissue, as SARS-CoV-2 RNA has been found in cerebrospinal fluid and in brain tissue 

after autopsy (159). Brain damage due to SARS-CoV-2 infection or irradiation can initiate or 

exacerbate injury to other organs, including respiratory or circulatory failure (159). 
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Additionally, there is some evidence that radiation exposure may cause long-term 

psychological issues (160), and given the similarities between radiation-induced central 

nervous system inflammation and coagulopathy and that seen in COVID-19, long-term 

neurological and psychological effects may be forthcoming.

Several published studies have outlined the cutaneous manifestations of COVID-19. These 

symptoms appear at different time points of the disease progression, either at onset of 

disease or after hospitalization (161), and depend on the severity (mild or severe) of the 

infection (162–164). The most common symptoms identified in patients with mild infections 

are chilblain-like eruptions (i.e., COVID fingers or toes), and petechiae/purpuric rashes, 

while patients with severe infections experience symptoms such as acro-ischemia with finger 

and toe cyanosis, cutaneous bullae, dry gangrene, chickenpox-like rash and maculopapular 

lesions (162). Like COVID-19, cutaneous manifestations from ARS depend on the timepoint 

and severity of exposure often assessed using a graded scale set forth by the National Cancer 

Institute (165). The most common symptoms are also the least severe, i.e., acute radiation 

dermatitis and mild erythema, and are seen in patients exposed to low-dose radiation. These 

complications usually present within 90 days of radiation exposure (165). Radiation-induced 

telangiectasias, keratoses, ulcers, hemangiomas, splinter hemorrhages in the distal nail bed, 

lentiginous hyperpigmentation and severe subcutaneous fibrosis may also occur. High-dose 

radiation exposure leads to severe symptoms such as moist desquamation and ulceration 

(165). Of note, these or similar injuries may occur in the oral epithelium in both COVID-19 

(166, 167), and after radiation exposure (168). In comparing cutaneous manifestations 

related to COVID-19 and ARS, the symptoms associated with ARS are more severe and 

long lasting. Delayed effects can be seen months to years postirradiation, while lesions due 

to COVID-19 infection appear to heal more quickly, usually within a few days (161, 169). 

On the other hand, vascular complications associated with COVID-19 infection closely 

resemble mild radiation burns seen in patients that have been exposed to mild (non-lethal) 

doses of radiation. In both COVID-19 and mild radiation cutaneous injury, vascular injury 

may be further contributing to the skin injury, and damage to the vasculature in the upper 

layers of the skin may be involved (162, 163, 169).

Other symptomatic overlaps between COVID-19 and radiation exposure include: acute 

kidney injury (72, 170–172), whether coagulopathy-related or direct, as renal tubule cells are 

a potential target for SARS-CoV-2 (173); liver injury, though more severe and possibly 

fibrotic in radiation hepatitis (174) compared to the usually mild elevation of aspartate 

aminotransferase and alanine aminotransferase levels seen in 14–53% of COVID-19 patients 

(175); and conjunctivitis (127, 176, 177), an immediate effect of radiation with possible 

long-term effects including macular degeneration and cataracts (178, 179). Fertility issues 

have been seen in irradiated individuals, and there is concern regarding male fertility in 

COVID-19 patients as well, as ACE2 receptors are also expressed in the testis, and some 

male patients have reported scrotal discomfort. Nonetheless, SARS-CoV-2 has yet to be 

found in semen, and this disease may still be too new to identify fertility issues (180). High 

rates of androgenetic alopecia in hospitalized COVID-19 patients have been documented, 

leading to the hypothesis that the use of anti-androgen therapy (flutamide) may be a possible 

treatment for COVID-19 patients (181).
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Radiation-induced coagulopathies (RIC) are part of the continuum of the irradiation 

sequalae (134, 182, 183), with parallels to DIC. Hemorrhage, a hallmark of DIC, was 

reported in 60% of the mortalities in the A-bomb-exposed population, accompanied by 

petechial lesions and thrombocytopenia (184), and was also observed after (184), as well as 

other radiation accidents (185, 186). Prevalence of prolonged clot formation times, increased 

levels of thrombin-antithrombin III (TAT) complex and increased circulating nucleosome/

histone (cNH) levels were noted in blood from irradiated clinical samples (134). D-dimer 

has not been reported in any of the radiation-related coagulopathy studies, but other metrics 

used to predict coagulopathy for COVID-19 are similar to RIC. Though in many systems 

radiation damage is much more severe and chronic, overall, the similarities noted thus far 

between COVID-19 and ARS/DEARE may provide insight into the late effects of 

COVID-19, as well as shed light on possible targets for diagnostics, prognostic markers and 

therapeutics.

MEDICAL COUNTERMEASURES

As noted, there are clear parallels between radiation exposure, which is known to act 

systemically to cause damage, and COVID-19, which has been implicated in organ damage 

ranging from the lung and GI tract to the heart, brain, kidney and vasculature. In fact, the 

characteristics of radiation-induced pneumonitis are similar to SARS-CoV-2 interstitial 

pneumonia (187). Therefore, it is not surprising that there are a number of treatments for 

radiation exposure under development that could prove to be efficacious for COVID-19. 

Because it is not possible to “fight” radiation in a conventional sense, in the way that it is 

possible to develop approaches directly targeting a pathogen, researchers have relied instead 

on modifying the host response to injury, to identify therapies to address damage caused by 

exposure to radiation. In many cases, these approaches have worked by harnessing the 

body’s innate immunity, which is often dysregulated by radiation exposure. These 

treatments fall into several general categories, which include anti-oxidants, anti-

inflammatories, antibiotics, anti-fibrotics, growth factors, cellular therapies, and products 

that target the vasculature or the RAS. Especially important to emphasize is the ability to 

repurpose these kinds of established drugs, some of which are already in clinical use, to 

expedite their use in patients with SARS-Cov-2 infection. These varied approaches will be 

considered separately below, according to their mechanisms of action.

Growth Factors

COVID-19 is characterized by damage to the lung and vasculature, reducing blood 

oxygenation. In a review of the effects of erythropoietin (EPO), Ehrenreich et al. (188) noted 

that EPO acts on tissues beyond erythropoiesis; these effects could be brought to bear in 

fighting SARS-CoV-2 pathology. EPO is produced in the body in response to low oxygen 

levels, and in the short term, binds to receptors in the brain stem to improve mechanical 

ventilation. EPO also acts on airways and lung vasculature to reduce inflammation and 

promote vascularization and has been shown clinically to be neuroprotective. Although at 

this writing, no trials have been started, a randomized placebo-controlled trial for proof-of-

concept has been proposed. EPO has also been shown to accelerate the expansion of 

erythroid progenitors in mouse irradiation models (189, 190). Galal et al. (191) described the 
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effects of EPO beyond erythropoiesis, through the reduction of oxidative stress via 

upregulation of anti-inflammatory receptors. These activities point to possible treatments to 

reduce inflammation contributing to radiation-induced GI, lung, or kidney injury.

Leukine® (sargramostim or granulocyte-macrophage colony-stimulating factor, GM-CSF; 

Partner Therapeutics Inc., Lexington, MA) is one of three leukocyte growth factors approved 

by the U.S. FDA for treatment of ARS (192). Lang et al. (193) noted that, just as immune 

system stimulation can either help the body fight a viral infection or produce a deleterious 

inflammatory response, administration or inhibition of GM-CSF may be useful therapies for 

COVID-19. Lung macrophages depend on alveolar GM-CSF production for their 

maintenance, and GM-CSF administration could provide protection against viral infection in 

the early stages of ARDS and promote tissue repair. At this writing, sargramostim is being 

proposed as a therapeutic against COVID-19 in three trials7 (NCT04400929, 

NCT04326920, NCT04411680). As for deleterious effects, GM-CSF can exacerbate the 

inflammatory response, driving lung pathologies such as those resulting from COVID-19. In 

this case, GM-CSF inhibition could reduce expression of the pro-inflammatory cytokines 

IL-1, IL-6 and TNF, providing a multi-pronged approach to dampen an overstimulated 

immune system. Monoclonal antibody treatments targeting GM-CSF or GM-CSF receptor 

that are ongoing include: otilimab (NCT04376684), gimsilumab (NCT04351243), 

lenzilumab (NCT04351152), TJM2 (NCT04341116) and mavrilimumab (NCT04397497, 

NCT04399980, NCT04447469). Namilumab is being used in the clinic in an expanded 

access program. Patients receiving treatment in these experimental protocols will need to be 

monitored carefully because of the role that GM-CSF plays in immunological homeostasis. 

In addition, it would appear that the timing of these kinds of growth factor interventions is 

critical to their potential efficacy.

Antioxidant Approaches

Radiation-induced damage is characterized by increases in reactive oxygen species (ROS) 

and oxidative stress (194–196). These increases, and the resulting inflammatory response, 

can damage other sensitive tissues (197–200). The antioxidant N-acetyl cysteine (NAC) has 

been shown to mitigate radiation-induced damage to the GI tract and improve 10- and 30-

day survival in mice receiving total-abdominal irradiation (201). NAC also decreased out-of-

field bone marrow damage and ROS levels, suggesting that bone marrow damage contributes 

to some of the radiation-induced GI injury. Because of similar patterns of tissue damage, 

Corry et al. hypothesized that COVID-19-induced damage to the lung could also be 

ameliorated by NAC treatment (202). This hypothesis was further supported by an earlier 

finding that NAC treatment of patients with acute lung injury and ARDS resulted in reduced 

mortality (203). Currently, there are several ongoing national clinical trials to address the 

possible benefit of NAC treatment in COVID-19 patients (NCT04374461, NCT04419025, 

NCT04370288 and NCT04279197).

Another compound under investigation for COVID-19 is the histamine H2-receptor 

antagonist famotidine. Typically used to treat acid reflux and heartburn, the drug is also 

7NIH/U.S. National Library of Medicine. ClinicalTrials.gov. (https://clinicaltrials.gov/)
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known to have antioxidant activity (204). Although an unlikely candidate to treat viral 

disease, famotidine first came to the attention of researchers interested in repurposing 

already-licensed products (205). Generic and off-patent drugs were of particular interest 

because of their safety and affordability, supported by extensive data in humans (206). In 

addition, in silico analysis suggested that the drug could be useful as a therapeutic 

alternative in COVID-19 (207). Clinicians have noted that hospitalized patients taking the 

drug for other medical indications appeared to recuperate from COVID-19 better than those 

who did not take the drug (208). A review of over 6,000 patient records suggested that 

famotidine use led to a death rate of ~14%, compared to 27% for those who had not taken 

famotidine. This finding was further supported by a retrospective analysis of COVID-19 

patients who received the drug within 24 h of hospital admission, which showed that its use 

reduced the risk of intubation or death (209). One suggested mechanism of action of 

famotidine is a direct action on the receptor, leading to improved mast cell regulation (210). 

Additional, prospective clinical trials to look at the efficacy of the drug in COVID-19 

patients are underway (NCT04370262, NCT04389567). A recently published article has 

suggested that famotidine is ineffective; however, the authors state that “We’re not 

challenging that famotidine might help. We’re saying that the mechanism of action is not 

antiviral”.8 This is consistent with the primary proposed antioxidant mechanism of action.

Radiation researchers have also sought to understand the protective effects of famotidine 

administration, with regards to limitation of DNA damage and cellular protection. With 

studies performed in vivo, in both pre-clinical irradiation models as well as in patients 

undergoing radiotherapy, the potential benefits of the drug have been demonstrated. 

Famotidine was found to be radioprotective in mice that were administered the drug prior to 

irradiation, as assessed by micronuclei formation in cells of the bone marrow (211, 212). 

Pre-clinical work with mouse leukocytes collected from irradiated animals documented 

consistent outcomes, with reductions in DNA damage in animals treated with famotidine 

prior to irradiation (213). Famotidine also significantly reduced lymphocytopenia in prostate 

cancer patients who received the drug a few hours prior to undergoing radiotherapy (214). In 

another study, prostate cancer patients given twice-daily oral doses of famotidine during 

their radiotherapy led to a reduction in radiation-induced injury to the normal rectal tissue 

(215). These clinical findings in cancer patients were based on earlier work using peripheral 

blood samples taken from normal healthy volunteers (216). In those studies, blood was 

irradiated ex vivo in the presence or absence of vitamin C and famotidine. Comet assay 

results suggested that the presence of famotidine was protective for radiation-induced 

apoptosis, with an estimated dose reduction factor of 1.5. The protective effects of the drug 

noted above suggest the drug may have an antioxidant effect and ability to scavenge free 

radicals, a mechanism that would justify clinical use of the drug for COVID-19.

Anti-inflammatory Approaches

Severe COVID-19 is characterized by a cytokine storm, indicative of an overactive immune 

response to the infection (217). Because elevated levels of pro-inflammatory cytokines are 

associated with high morbidity and mortality, various approaches to modulate the 

8Saey TH. A popular heartburn medicine doesn’t work as a COVID-19 antiviral. ScienceNews 2020. (https://bit.ly/2ZSFtDi)
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inflammatory response have been proposed. Specifically, COVID-19 results in elevated 

levels of serum IL-6 (217). The IL-6 receptor antagonist, tocilizumab (Actemrat®, 

Genentech, San Francisco, CA), indicated for rheumatoid arthritis, has also been proposed to 

ameliorate radiation-induced tissue damage, and has shown efficacy in diminishing the 

cytokine storm resulting from cancer immunotherapy (218). In early published clinical 

studies to assess the potential impact of tocilizumab treatment in COVID-19, Somers et al. 
(219) performed a single-site trial of the drug in 154 COVID-19 patients on mechanical 

ventilation. Treatments resulted in a lower hazard of death, although the rate of 

superinfections increased. Antinori et al. (220) noted the risk of a secondary Candida 
infection from tocilizumab treatment, and therefore suggested that the drug only be used in 

well-designed clinical trials. Currently, a tocilizumab treatment arm has been included as 

part of the University of Oxford’s Randomised Evaluation of COVID-19 Therapy 

(RECOVERY) trial,9 the results of which have not been made available at the time of this 

writing. In a study looking at the effect of the drug in critically ill patients, treatment led to 

improved oxygenation and blood counts (221). In addition, another anti-IL-6 receptor 

antibody, sarilumab (Kevzarat®; Regeneron Pharmaceuticals Inc., Tarrytown, NY and 

Sanofi, Paris, France) is also under clinical consideration in more than 10 registered trials as 

a treatment for late-stage COVID-19 patients.

Dexamethasone is a generic corticosteroid drug, which is licensed for a broad range of 

indications including arthritis, allergic reactions and immune system disorders. 

Dexamethasone has been shown to reduce multi-organ damage, including lung injury, in rats 

that have been exposed to localized radiation (222). In non-human primate (NHP) models of 

radiation-induced lung injury, dexamethasone has been used as a component of the medical 

management, where it is given when there is an increase in the non-sedated respiratory rate, 

which suggests respiratory distress (138, 223, 224). This use of the drug is similar to its 

clinical use for dyspnea (225). In these NHP studies, dexamethasone treatment reduced the 

elevated respiratory rate, lung density, pleural effusion and pneumonitis, leading to improved 

outcomes. Dexamethasone treatment has also been included as an arm in the RECOVERY 

trial (226), where its use has been shown to reduce COVID-19 mortality from 40.7% to 29% 

among patients who required invasive mechanical ventilation, but did not appear to confer a 

benefit to hospitalized patients who received only oxygen. These data suggest that 

corticosteroid treatment may only be effective if the immune system is overstimulated to the 

extent that it is causing significant harm. The WHO Rapid Evidence Appraisal for 

COVID-19 Therapies Working Group performed a meta-analysis of seven randomized trials 

and concluded that systemic corticosteroids reduced 28-day all-cause mortality (227). 

Another treatment that has been shown to improve survival in a mouse model of radiation-

induced lung injury is BIO 300 (Humanetics Corp., Edina, MN), which is a nanosuspension 

of the soy isoflavonoid, genistein. In mice, BIO 300 administration improved survival and 

reduced other morbidities caused by lung irradiation (228). Although genistein has antiviral 

activity (229–231), it may also be useful to prevent radiation-induced lung damage. 

Genistein is thought to act through inactivation of NF-κB (232), and since NF-κB inhibition 

9RECOVERY/Randomised Evaluation of COVID-19 Therapy. Oxford, UK: University of Oxford; 2020. (https://
www.recoverytrial.net/)
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has been shown to reduce inflammation in a mouse model of COVID-19, it could be 

effective in treating lung complications caused by SARS-CoV-2 infection. Humanetics has 

announced initiation of a clinical trial in discharged COVID-19 patients, to determine if 

treatment with the oral BIO 300 product can reduce late lung fibrosis and improve quality of 

life in patients who are recovering from the infection (NCT04482595).

Given that the autoimmune disease, rheumatoid arthritis (RA) is caused by an overactive 

immune response that targets normal joint tissue, it is not surprising that approaches that 

have shown benefit in RA are being considered for COVID-19. For example, anakinra 

(Kineret®; Swedish Orphan Biovitrum AB, Stockholm, Sweden), a specific IL-1 receptor 

antagonist, has been proposed as a possible treatment. Similarly, anakinra has been reported 

to reduce vascular inflammation in a mouse model of radiation exposure (233). In that study, 

administration of the drug for two weeks postirradiation reduced the expression of 

inflammatory mediators such as pro-caspase and caspase-1. In an early case report from 

Italy, clinicians described a critically ill patient who was successfully treated with anakinra 

(234). Other studies have since followed; in fact, King et al. have described ten ongoing 

clinical trials that target hyper-inflammation. It is clear that many different dosing regimens 

are being tested and that most of these smaller studies (<400 patients) should be considered 

preliminary, but data arising from these studies could lead to larger-scale studies with more 

uniform treatments. The outcomes of some of these anakinra studies have been published. In 

the anakinra-COVID study performed in France, 25% of patients who were treated with 

anakinra required invasive mechanical ventilation or died, compared to 44% of historical 

controls from the same hospital (235). In another small retrospective cohort study from Italy, 

part of the COVID-19 Biobank study, anakinra-treated patients showed improvement in 

respiratory parameters (reduced need of supplemental oxygen, improved PaO2/FiO2 ratio) 

and reductions in the inflammatory marker, C-reactive protein.

Anti-fibrotic Approaches

Lung inflammation caused by radiation can progress to fibrosis in later stages of injury, 

causing shortness of breath and reduced blood oxygen saturation. Drugs currently approved 

to treat lung fibrosis include nintedanib (OFEV®; Boehringer Ingelheim, Ingelheim am 

Rhein, Germany) and pirfenidone (Esbriett®; Genentech). Nintedanib is a tyrosine kinase 

inhibitor approved for idiopathic pulmonary fibrosis. Using a mouse model of localized 

irradiation, researchers demonstrated that nintedanib protected against long-term fibrosis, as 

detected microscopically at 39 weeks postirradiation (236). Similarly, studies showed 

protection in a mouse model of thoracic irradiation by pirfenidone treatment (237). In terms 

of COVID-19 and its progression, it was noted that patients who experienced severe ARDS 

often exhibit later lung fibrosis (238). Although anti-inflammatory treatments could prevent 

late-stage disease, it is not known if this will be the case for COVID-19. For this reason, the 

authors propose that anti-fibrotics, such as those described above, should be studied in 

clinical trials. In one clinical study (NCT04338802), patients will be randomized into a 

placebo-control or nintedanib treatment group, and in another, the safety and efficacy of 

pirfenidone will be studied in patients with SARS-CoV-2 infection (NCT04282902). 

Similarly, imatinib (Gleevec®; Novartis, Basel, Switzerland), licensed for chronic myeloid 

leukemia,10 and previously shown to increase the survival time of irradiated mice by 
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delaying lung disease, has been suggested as a COVID-19 treatment (239). Several clinical 

trials are planned (NCT04357613) or recruiting (NCT04394416) patients to study the drug 

as a possible treatment for the disease.

Pentoxifylline is another drug that could potentially be repurposed as a treatment for 

COVID-19. Originally licensed to treat pain in individuals suffering from intermittent 

claudication (peripheral arterial disease),11 pentoxifylline improves blood flow, thereby 

increasing tissue oxygenation. It has also been shown to inhibit synthesis of pro-

inflammatory cytokines, specifically TNF-α (240). Pentoxifylline has been shown to reduce 

radiation-induced fibrovascular injury in animal models (241) and in the clinic (242). 

Because of these anti-fibrotic (and anti-inflammatory) activities, pentoxifylline has been 

proposed as a possible preventative of COVID-19 complications (243) and will be tested in a 

clinical trial (NCT04433988). Another driver of pulmonary fibrosis, TGF-β (244), presents a 

potential target for the prevention of pulmonary fibrosis in COVID-19 patients (245). For 

example, an antisense mRNA product that targets TGF-β2 production, OT-101 (Mateon 

Therapeutics, San Francisco, CA), is in phase 3 trials for several cancers, and has been 

proposed as a COVID-19 treatment (246). Given the probable involvement of TGF-β in the 

progression of COVID-19, a preclinical, anti-TGFβ receptor 1 product, IPW5371 

(Innovation Pathways, Palo Alto, CA) may also be a promising candidate to treat 

COVID-19-induced lung fibrosis, as it has previously been shown to reduce fibrosis and 

improve survival in a mouse model of radiation exposure (247).

RAS-Targeted Approaches

In the early stages of the pandemic, it became clear that one method by which the SARS-

CoV-2 virus gained access to the internal cellular machinery was via the ACE2 receptor, the 

expression of which is most prevalent on lung alveolar epithelial cells (248). This finding 

was similar to SARS-CoV, which also used the ACE2 receptor to gain entry into cells (249). 

Therefore, initial treatments considered for patients were angiotensin-converting enzyme 

inhibitors (ACEIs) or angiotensin II type receptor blockers (ARBs). Because many drugs, 

such as angiotensin-converting enzyme inhibitors (ACEIs), are generic and widely available, 

they represent a valuable option in repurposed drugs. Clear benefits include low cost, wealth 

of clinical experience, established human data and minimal side effects. During the initial 

stages of the COVID-19 response, it was thought that individuals currently taking 

hypertensive drugs could be at an increased risk of infection, and therefore, their use should 

be discontinued in COVID-19 patients (250, 251). In one large retrospective study of over 

12,000 patients, the relationship between prior use of ACEIs and patient outcomes after 

infection was considered, with the finding that there was no correlation between prior 

hypertension medication use and COVID-19 risk (252).

In addition, it became evident that certain segments of the population were more likely to 

have more severe forms of disease and a propensity to develop ARDS. These individuals 

included those with cardiovascular disease, diabetes and hypertension, all of which have 

10Gleevec (imatinib mesylate) tablets for oral use. Prescribing information. Stein, Switzerland: Novartis Pharma Stein AG; East 
Hanover, NJ: Novartis Pharmaceuticals Corp.; 2008. (https://bit.ly/3kyuqan)
11Trentalt® (pentoxifylline). Reference ID: 3873773. Parsippany, NJ: Validus Pharmaceuticals LLC; 2016. (https://bit.ly/2ZYT6Rz)
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associations with dysregulated aspects of RAS (253). Still other studies suggested that these 

drugs should be considered as a potential treatment due to their multi-prong effects (e.g., 

anti-inflammatory anti-oxidant and antifibrotic) (254). Therefore, there remains a need to 

evaluate both angiotensin agonists and antagonists for COVID-19 (255). In one study, 

COVID-19 patients with hypertension were enrolled, to explore if the use of ACEI or 

angiotensin receptor antagonist treatments would impact the severity and progression of the 

infection (256). As a biomarker of efficacy, serum levels of IL-6 and circulating T-cell 

counts were also evaluated. Both treatments were found to increase T cells, decrease viral 

load and IL-6 levels, and reduce the severity of the course of the disease. Therefore, the 

recommendation was made to maintain ACEI and angiotensin receptor blocker treatments in 

patients with COVID-19.

Similarly, the radiation community has established the role that products targeting RAS can 

play on the progression of radiation-induced organ injuries, primarily the lung and kidneys. 

Many studies have demonstrated the ability of ACEI products to address radiation-induced 

lung injuries. Primarily conducted in rat models of injury, ACEIs were found to increase 

survival and decrease lung, kidney and vascular damage (257, 258). These findings were 

consistent across different methods of radiation exposures, such as TBI plus bone marrow 

transplant (BMT), whole-thorax lung irradiation (WTLI), or partial-body irradiation (PBI) 

with a percentage of the bone marrow spared using shielding (259). Mitigation of lung and 

kidney injuries was determined through assessment of circulating markers of renal damage 

(e.g., blood urea nitrogen and creatinine) and CT imaging of lungs in irradiated animals. In 

an irradiated rat model, captopril and fosinopril both increased survival after 11 Gy (TBI 

with BMT) and decreased lung injury (257). Similarly, lisinopril was found to mitigate 

kidney (260) and lung (259) damage after high-dose PBI in adult rats and improve survival 

in juvenile and geriatric rats (38). Enalapril mitigated injury and improved survival in a 

WTLI rat model, even when initiated 35 days postirradiation (261). Captopril, administered 

in a TBI model, improved survival, although that benefit was diminished when coupled with 

skin trauma (262). Finally, ramipril mitigated radiation-induced damage to the spinal cord 

(263). In other preclinical models of radiation injury, angiotensin (1–7) [A(1–7)], a 

component of the RAS mentioned above, has also been studied for its ability to improve 

survival in irradiated rodents (264, 265). These peptides, which have been shown to alter 

activity in many cell types, accelerated recovery of the bone marrow in mice receiving TBI, 

and also improved the platelet nadir in the animals (264). In later studies, angiotensin 

peptides, even when administered days post-lethal irradiation, improved mouse survival and 

reduced bleeding time (265).

Approaches Targeting the Vasculature

The ability of the virus to directly infect and dysregulate endothelial cells (41) is the driving 

force behind vascular coagulopathies and thromboses observed in COVID-19 patients. In 

addition to vascular effects resulting from direct viral infection, COVID-19 patients have 

been found to have higher levels of VEGF as compared to healthy controls (266). Elevated 

VEGF could further increase vessel permeability, leading to some of the symptoms noted in 

patients. Furthermore, studies have implicated VEGF as a target for therapeutic intervention 

in ARDS (267). At the time of this writing, several clinical trials of COVID-19 patients are 
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being planned or are recruiting to assess the potential efficacy of bevacizumab, an anti-

VEGF, long-lived, humanized monoclonal antibody, as a treatment for COVID-19-

associated ARDS (NCT04275414, NCT04344782, NCT04305106). Also known as 

Avastin®, the mechanism of action of the drug is to bind to extracellular VEGF and prevent 

its interaction with its receptor on endothelial cells (268).

Radiation exposure has long been known to lead to vascular impairment, which is believed 

to explain the multi-organ dysfunction that it causes (121). Many promising clinical 

approaches that target the vasculature could have an effect on radiation-induced damage. 

VEGF also represents a molecule that is involved in radiation exposure, and thus, is a target 

for reducing the negative effects. For example, VEGF levels have been shown to be 

increased in mice after irradiation (269, 270), and elevated levels of the growth factor have 

been implicated in the development of radiation-induced necrosis of normal tissue (271). 

Anti-VEGF antibodies (bevacizumab) have been shown to mitigate radiation necrosis in 

mouse brains (272), and in rats that underwent gamma-knife radiosurgery (273), and 

bevacizumab has been used in the clinic for radiation injury, where it was found to reduce 

necrosis in nasopharyngeal carcinoma patients who received radiotherapy (274).

As observations continue to be made in COVID-19 patients, it has become apparent that 

DIC may be responsible for many of the complications that have been seen (275–278). This 

condition, which is characterized by the development and circulation of small blood clots, 

can lead to the blockage of small vessels. As a follow-on effect, the abnormal consumption 

of platelets can, in turn, lead to thrombocytopenia and hemorrhage (279). In several animal 

models of lethal radiation exposure, including ferrets (280) and Yucatan minipigs (281), 

there has been evidence of DIC, both in the early days after irradiation and at the time of 

death. It is believed that DIC could be a contributor to radiation-induced human mortality 

(50), as hemorrhage at time of death has been seen clinically in irradiated patients. A major 

finding in autopsies of humans who have died from radiation exposure (282), widespread 

bleeding in the tissues often occurs as a result of DIC. Coagulation abnormalities have also 

clearly emerged as a key hallmark of COVID-19 infections (283). In addition to thromboses 

(284), thrombocytopenia has also been noted in some patients experiencing COVID-19 

infection. In a study from China involving over 1,000 patients, 36.2% were 

thrombocytopenic, a finding that was greater in cases that were more advanced (98). This 

association of low platelet count with the infection is also supported by a meta-analysis in 

which data from nine studies were examined, involving nearly 1,800 patients (71). Those 

researchers found that platelet counts were much lower in patients with severe disease and 

concluded that these lowered counts could indicate an increased mortality risk. It is 

postulated that infection with SARS-CoV-2 leads to this dysregulated platelet state via a 

number of different causative pathways, including a reduction in platelet production due to 

loss of progenitors and growth inhibition, increased clearance due to evolution of 

autoantibodies, and enhanced platelet consumption due to lung injury, which leads to 

platelet activation and formation of microthrombi (284).

Like COVID-19, radiation exposures, especially TBI, are known to lead to a reduction in 

platelet levels. This thrombocytopenia has been postulated to play a major role in deaths 

from exposure (282). To address this manifestation of radiation injury, drugs that promote 
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platelet production and are FDA-approved for other indications [e.g., immune 

thrombocytopenic purpura (ITP)] have been tested to see if they could mitigate damage and 

improve survival. This has included preclinical and clinical studies of drugs such as Nplate® 

(Amgen, Thousand Oaks, CA) (6, 285), and Promacta® (Novartis) (286, 287). Although 

there is a case report documenting use of Promacta to treat a COVID-19 patient who 

presented with ITP symptoms while hospitalized (288) and responded well to the treatment, 

it does not appear that these therapies have been attempted on a broader scale thus far. This 

may be due to the delicate balance between thrombocytopenia and thrombosis in these 

patients; timing of interventions is crucial to their efficacy or detriment. According to case 

reports, heparin has been administered as a means of countering hypercoagulation (289), and 

the International Society of Thrombosis and Haemostasis is now recommending use of 

heparin for all COVID-19 patients (290). Clearly, clinical decisions concerning the use of 

treatments that either enhance platelet counts or seek to reduce clotting are complex, and the 

use of these kinds of treatments represents an area of great interest. TP508, a 23 amino acid 

peptide that is a truncated form of human prothrombin, has also been shown to mitigate 

radiation normal tissue injury and increase survival in a mouse TBI (LD100/15) model 

(291). Under study in a number of other preclinical models [e.g., ischemia (292) and 

musculoskeletal injuries (293), and in clinical trials to address diabetic foot ulcers (294)], 

TP508 has been shown to enhance tissue repair by targeting endothelial cells (292). This 

product is in early preclinical testing as a treatment for COVID-1912 because it targets the 

vasculature as its primary mechanism of action and has generalized ability to mitigate tissue 

damage.

Statins as a Common Treatment for Vascular Injury

Statins represent another area of drug treatment overlap between radiation and COVID-19 

(295, 296). In addition to an anti-inflammatory effect, statins may modify the entry of 

viruses into cells, inducing autophagy of infected cells or altering activation of the 

coagulation cascade (297). In silico studies suggest that statins possess direct antiviral 

activity through blocking infectivity (298) and have been shown to enhance ACE2 levels 

(299) and protect against ARDS (300).

In clinical trials of COVID-19 patients, observed benefits were suggested to outweigh their 

potential risk (301). A retrospective study of patients treated with statins for other 

indications while hospitalized with COVID-19 showed a lower risk of mortality (302). In 

animal models of radiation injury, statins have demonstrated damage mitigation to normal 

tissues. Simvastatin, a HMG-CoA reductase inhibitor with widespread clinical use, has been 

shown to mitigate lung injury in a high-dose thoracic irradiation mouse model (303), and 

protects the GI tract, bone marrow (304) and salivary glands (305). Similarly, atorvastatin 

limits radiation-induced heart damage in a rat model (306) and kidney injury in mice (308).

Perhaps most significant, in terms of overlap with a primary mechanism of action involved 

in COVID-19, atorvastatin has been shown to induce a protective response in irradiated 

human umbilical vein endothelial cells (HUVECs) (308). Treatment of HUVECs with 

12Chrysalis BioTherapeutics receives funding from the National Institutes of Health for COVID-19 therapeutic development. 
Galveston, TX: Chrysalis BioTherapeutics Inc.; 2020. (https://bit.ly/2HkvCQm)
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atorvastatin decreased radiation-induced cell apoptosis, thought to be driven by upregulation 

of thrombomodulin and protein C activation. Finally, lovastatin, when administered after 

high-dose irradiation in a WTLI mouse model, increased survival, reduced levels of 

macrophages and lymphocytes in the lung and decreased collagen (309). Activated protein C 

(APC) has been tested for its ability to mitigate radiation injuries (310) and has now been 

proposed as a therapy for the vascular dysfunction and abnormal thrombosis (e.g., DIC) 

observed in COVID-19 patients (311). APC’s ability to downregulate inflammation and 

generate thrombin indicates its potential to reduce inflammation and limit ischemic injury 

throughout the body.

Antibiotic Treatments for Radiation or SARS-CoV-2 Infection, beyond Antibacterial 
Properties

Given the need to rapidly assess potential treatments, many clinicians have turned to 

antibiotics, which have the advantage of safety data and clinical experience. Several classes 

of antibiotics, which have activity against secondary bacterial infections and have anti-

inflammatory and antiviral properties, have been suggested as potential treatments for 

COVID-19. In silico modeling and other predictive studies indicate efficacy of 

aminoglycoside compounds such as streptomycin (312); tetracyclines, such as doxycycline 

(313, 314) and eravacycline (312); macrolide antibiotics, such as azithromycin (315); 

streptogramins, such as quinupristin (316); polyether ionophoric antibiotics, such as 

salinomycin (317); and glycopeptides, such as teicoplanin. Teicoplanin, a drug used to treat 

Staphylococcus infections, was found to be effective against MERS and is predicted to also 

be effective against SARS-CoV-2 (318, 319). There was hope that azithromycin, in 

combination with hydroxychloroquine (320), might be effective in reducing the severity of 

SARS-CoV-2 infections (321). The drug, commonly used to treat respiratory and other 

infections, is thought to strengthen interferon-mediated antiviral responses (315). 

Unfortunately, clinical studies did not provide evidence of efficacy of the drug (322). In 

contrast, some studies suggest limited benefit from the use of antibiotics, either alone or in 

combination (323) in both children and adults with COVID-19 (324), and other research 

suggests that the use of some antibiotics could actually worsen the progression of the disease 

(325).

As with COVID-19, the efficacy of antibiotics, outside of their normal antibacterial impact, 

have been observed in the mitigation of radiation normal tissue injuries. In vitro screening of 

a broad range of antimicrobial agents was conducted to determine if any of these molecules 

could be used a mitigators of radiation injury. In one screen that used hematopoietic 

progenitor cells in a clonogenic survival assay, tetracycline was identified as a significant 

mitigator (326). In another in vitro screen of mouse lymphocytes, two antibiotic classes, 

tetracyclines and fluoroquinolones (10 different molecules), were identified as potential 

radiation mitigators, which the authors attributed to being separate from their antibacterial 

properties. From these potential mitigators, tetracycline showed efficacy in a TBI mouse 

model of survival and further data mining confirmed these earlier findings (327). The 

predicted impact of quinolones on mitigation of radiation injuries was not surprising, given 

earlier studies in mice that showed ciprofloxacin, sparfloxacin and clinafloxacin could 

enhance colony-forming units in the bone marrow and white blood cell counts in irradiated 
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mice (328). Similarly, a published study from 1961 showed that the presence of 

chlortetracycline in rodent feed decreased X-ray killing in mice (329). In more recent 

studies, fluoroquinolones, such as ciprofloxacin and levofloxacin, as well as doxycycline, 

and neomycin, were all found to increase the mean survival time in mice exposed to lethal 

doses of radiation. Doxycycline and neomycin also improved day-30 survival in the animals 

(330). In other work, ciprofloxacin, an antibiotic notable for its efficacy in treating bacterial 

pneumonia and other infections, was also shown to enhance survival after radiation exposure 

in vivo and in vitro. In studies using peripheral blood mononuclear cells, ciprofloxacin 

protected against radiation exposure by inhibiting p53 phosphorylation and increasing Bcl-2 

production (331), and has also been shown to increase survival in a mouse model of TBI 

(332).

Cellular Therapies

The development and use of cellular therapies, in both the oncology clinic (333) and as a 

radiation treatment (334, 335), has long been an approach of interest. In particular, 

mesenchymal stem (or stromal) cells (MSCs) have been shown to mitigate the effects of 

radiation-induced lung injury (336, 337). Stem cells, as well as extracellular vesicles are also 

being considered as a means of treating injuries caused by SARS-CoV-2 (338). Specifically, 

MSCs derived from various sources, are under study to address lung injuries in COVID-19 

patients (339). These sources include the bone marrow (340), umbilical cord (341), adipose 

tissue (342), peripheral blood and placenta. Early reported work indicates that the use of 

MSCs in patients is safe, and their use is effective in improving lung functional outcomes 

(343). There are more than 30 clinical trials worldwide in which these cells are being used as 

COVID-19 treatments (clinicaltrials.gov). In fact, several cellular therapies that are under 

active investigation for their development as radiation normal tissue injury mitigators are 

also showing promise as therapies in COVID-19 patient trials. These trials include those for 

placental expanded (PLX) cells13 and multipotent adult progenitor cells (Multi-Stem®; 

Athersys® Inc., Cleveland, OH).14

CONCLUSIONS

The majority of SARS-CoV-2 infections are asymptomatic or symptomatically mild and do 

not require hospitalization. However, at the time of this writing, there are over 50 million 

confirmed infections worldwide, with more than 9 million confirmed cases in the U.S. alone, 

of which hundreds of thousands have required hospitalization and over 225,000 have died. 

While host factors such as comorbidities, age and possibly genetics are strongly associated 

with the severity of disease, it is clear that the pathology of severe COVID-19 is 

characterized by a dysregulated inflammatory response, the so-called “cytokine storm,” 

along with a thrombotic response involving elevated D-dimer levels and coagulopathies 

ranging from small vessel thrombi to DIC. The cytokine storm is manifested through high 

levels of pro-inflammatory cytokines such as IL-1β, IL-6, IL-18, and TNFα. The cumulative 

systemic effects of the hyperinflammatory response and dysregulated thrombotic activity 

13Pluristem provides 28-day follow up for ventilator-dependent COVID-19 patients under compassionate use program in Israel and 
U.S. Los Angeles, CA: GlobeNewswire, Inc.; 2020. (https://bit.ly/3cjdzVX)
14COVID-19 and other viral induced ARDS. Cleveland, OH: Athersyst, Inc.: 2020. (https://bit.ly/33IsQMe)
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can lead to multi-organ failure and death. In the current absence of any effective 

prophylactic interventions, therapeutics capable of beneficially altering these dysregulated 

processes and supporting recovery are urgently needed.

A striking feature of the immune dysregulation, progression of disease and mechanisms of 

organ damage in COVID-19 is its similarity to the biological responses to ionizing radiation 

exposure at doses sufficiently large to cause ARS (>2 Gy in humans). The similarity of 

inflammatory responses and organ damages that are caused by COVID-19 and radiation 

offers an opportunity for possible COVID-19 interventions. There is a wealth of data 

(detailed above) and extensive experience from the field of radiation biology for the 

development of radiation mitigators that target radiation-induced dysregulation of 

inflammation, lung fibrosis and vascular damage that may lead to multi-organ failure and 

death in a fashion similar to that seen in COVID-19. Many of these agents are currently at 

preclinical levels of development, but several are already licensed as radiation mitigators and 

FDA approved for use in humans (Neupogen®, Neulasta®, Leukine®), or have 

demonstrated safety in human clinical trials for other indications, and are therefore well-

poised for possible translation to COVID-19 indications. Finally, in perhaps the truest 

definition of overlap between radiation and COVID-19, is the novel (and yet “old-school”) 

proposal, that low-dose radiation therapy (LDRT), involving exposure of the thorax of the 

patient, may have efficacy in countering lung infections, including those caused by SARS-

CoV-2 infection. This concept is based on studies on the use of radiation exposures in the 

early 1900s, before the advent of modern antibiotics, in which radiation was used to treat 

pneumonias resulting from bacterial or viral infections (344). This treatment proposal, 

however, is not without controversy. Already, numerous editorials and comments have been 

published (345–352) and discussion surrounding this treatment modality will undoubtedly 

continue. Nonetheless, LDRT is not considered to be a potential mitigator of high-dose 

radiation damage to the lung, and therefore this treatment generally falls outside the scope of 

the current review.

While medical expertise in the fields of infectious disease, pulmonology, immunology, 

rheumatology and hematology are critical paths forward in the search for COVID-19 

therapeutic interventions, the substantial overlap in pathobiology between COVID-19 and 

ARS presents the possibility of readily translatable, potentially high-impact pharmacological 

interventions that were originally evaluated and/or developed to mitigate radiation injury in 

humans. By the same token, it is possible that, given the broad range of new treatment 

approaches that are being considered for possible efficacy in COVID-19 infections, some of 

these could one day be repurposed for use as radiation medical countermeasures.
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FIG. 1. 
Panel A: Schematic showing the human organ systems affected by radiation exposure and 

comprise both acute and delayed radiation syndromes (Published and modified with 

permission; licensed from ClipArt ETC: https://bit.ly/3mHcyvG). Panel B: A representative 

list of extrapulmonary symptoms observed in COVID-19 (SARS-CoV-2 infection) (353). 

Coronavirus image published and modified, with permission, from the University of Virginia 

School of Medicine (https://at.virginia.edu/32MutJv).
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